Website
Modulhandbuch ab WS 2007/08

Modul CS4405-KP04, CS4405

Neuroinformatik (NeuroInf)

Dauer:


1 Semester
Angebotsturnus:


Jedes Sommersemester
Leistungspunkte:


4
Studiengang, Fachgebiet und Fachsemester:
  • Master Medizinische Ingenieurwissenschaft 2020 (Wahlpflicht), Informatik/Elektrotechnik, Beliebiges Fachsemester
  • Master Mathematik in Medizin und Lebenswissenschaften 2016 (Pflicht), Informatik, 2. Fachsemester
  • Master Robotics and Autonomous Systems 2019 (Wahlpflicht), Wahlpflicht, 1. oder 2. Fachsemester
  • Master Medizinische Ingenieurwissenschaft 2014 (Wahlpflicht), Informatik/Elektrotechnik, Beliebiges Fachsemester
  • Master Medizinische Ingenieurwissenschaft 2011 (Wahlpflicht), Mathematik, 2. Fachsemester
  • Bachelor Medizinische Ingenieurwissenschaft 2011 (Wahlpflicht), Wahlpflicht in MIW, 6. Fachsemester
  • Master Informatik 2012 (Wahlpflicht), Vertiefungsblock Organic Computing, 2. oder 3. Fachsemester
  • Master Medizinische Ingenieurwissenschaft 2011 (Vertiefung), Bildgebende Systeme, Signal- und Bildverarbeitung, 2. Fachsemester
  • Master Informatik 2012 (Wahlpflicht), Vertiefungsblock Intelligente Eingebettete Systeme, 2. oder 3. Fachsemester
  • Master Informatik 2012 (Pflicht), Anwendungsfach Robotik und Automation, 2. Fachsemester
  • Master Informatik 2012 (Pflicht), Anwendungsfach Bioinformatik, 2. Fachsemester
  • Master Mathematik in Medizin und Lebenswissenschaften 2010 (Pflicht), Informatik, 2. Fachsemester
Lehrveranstaltungen:
  • CS4405-V: Neuroinformatik (Vorlesung, 2 SWS)
  • CS4405-Ü: Neuroinformatik (Übung, 1 SWS)
Workload:
  • 20 Stunden Prüfungsvorbereitung
  • 55 Stunden Selbststudium
  • 45 Stunden Präsenzstudium
Lehrinhalte:
  • Überblick über das Gehirn, Neurone und (abstrakte) Neuronenmodelle
  • Lernen mit einem Neuron: * Perzeptrons * Max-Margin-Klassifikation * LDA und logistische Regression
  • Netzwerkarchitekturen: * Hopfield-Netze * Multilayer-Perzeptrons * Deep Learning
  • Methoden des unüberwachten Lernens: * k-means, Neural Gas und SOMs * PCA & ICA * Sparse Coding
Qualifikationsziele/Kompetenzen:
  • Die Studierenden verstehen die grundsätzliche Funktionsweise eines Neurons und des Gehirns.
  • Sie kennen abstrakte Neuronenmodelle und können für die unterschiedlichen Ansätze Einsatzgebiete benennen.
  • Sie können die grundlegenden mathematischen Techniken anwenden, um Lernregeln aus einer gegebenen Fehlerfunktion abzuleiten.
  • Sie können die vorgestellten Lernregeln und Lernverfahren anwenden und teilweise auch implementieren, um gegebene praktische Probleme zu lösen.
Vergabe von Leistungspunkten und Benotung durch:
  • Klausur oder mündliche Prüfung nach Maßgabe des Dozenten
Modulverantwortlicher:
Lehrende:
Literatur:
  • S. Haykin: Neural Networks - London: Prentice Hall, 1999
  • J. Hertz, A. Krogh, R. Palmer: Introduction to the Theory of Neural Computation - Addison Wesley, 1991
  • T. Kohonen: Self-Organizing Maps - Berlin: Springer, 1995
  • H. Ritter, T. Martinetz, K. Schulten: Neuronale Netze: Eine Einführung in die Neuroinformatik selbstorganisierender Netzwerke - Bonn: Addison Wesley, 1991
Sprache:
  • Wird nur auf Deutsch angeboten
Bemerkungen:

Prüfungsvorleistungen können zu Beginn des Semesters festgelegt werden. Sind Vorleistungen definiert, müssen diese vor der Erstprüfung erbracht und positiv bewertet worden sein.

Nach der alten MIW-Bachelor Pruefungsordnungsversion (bis WS 2011/2012) ist ein Wahlpflichtfach für das 4. Semester statt dem 6. Semester vorgesehen.

Zulassungsvoraussetzungen zum Modul:
- Keine

Zulassungsvoraussetzungen zur Prüfung:
- Erfolgreiche Bearbeitung von Übungsaufgaben während des Semesters

Letzte Änderung:
22.11.2019

Modulhandbuch online

Zur Liste aller Module